
NOCAP: Nearby-operand Continuous Approximation
ZHIXIANG TEOH, PETER LY, OWEN GOEBEL, and NEEL SHAH∗

A framework for generation of lookup tables based on profile data is

presented
1
. Lookup tables allow for quicker evaluation of functions

by approximating the value of the function by an input which is

near the original input. This can alternatively be thought of as hard-

coding the function to return certain values on input ranges. We

implement these functionalities using LLVM. We find that, for gen-

eral use, there is a minor speedupwhen applying this transformation

and that, for crafted benchmarks, there is significant speedup.

1 INTRODUCTION
Approximate computation is the idea of optimizing the util-

ity of an application by sacrificing the quality of application

output for an increase in computation speed. In some cases,

computation of an exact result is not necessary for an appli-

cation to be used in practice and it is desirable to accept an

effectively negligible error in the output of the application for

a significant speedup. In these cases, it is beneficial to have

a programmatic way to generate versions of the application

which trade between the error and speed of the application.

In this project, we study the usefulness of table lookup en-

hanced with profiled data by implementing a table lookup

relaxation in LLVM. The benefit here is that application speed

can be improved by increasing compilation time and decreas-

ing the quality of the output. Similarly to the ideal setting

of having a programmatic way to generate versions of the

application which trade between the error and speed of the

application, we provide a way for the users of our framework

to trade between the amount of error and speed by configur-

ing the amount of memory used to generate the table.

The rest of the paper is organized as follows: section 2 iden-

tifies related work, section 3 describes our implementation,

section 4 describes how the implementation is evaluated, sec-

tion 5 provides the results of evaluation and our analysis of

said results, and section 6 provides our findings.

2 RELATED WORK
Much of the recent work in approximate computation has

been directed in two directions:

• Generating techniques which give trade-offs between

application quality and speed.

• Generating frameworks which programmatically ap-

ply relaxations to attain target levels of quality.

We survey results of both types.

∗
All authors contributed equally to the project.

1
https://github.com/neel-one/nocap

Authors’ address: Zhixiang Teoh, zhteoh@umich.edu; Peter Ly, pmly@umi

ch.edu; Owen Goebel, oagoebel@umich.edu; Neel Shah, neelsh@umich.edu.

2.1 Techniques of Approximate Computation
Relaxations may occur at the software level or at the hard-

ware level. Several techniques of both abstraction levels are

classified in [1] and [2]. In this section we describe techniques

relevant to the approximation of numerical functions.

2.1.1 Linear/Polynomial Approximation. It is well known
that a function can be locally approximated by a polynomial

fit to the function. Linear/polynomial appproximation [3]

is a technique where calls to functions (especially mathe-

matical functions like sin and cos) are replaced by calls to

linear/polynomial approximations of the original function

(often these approximations are related to the Taylor series

approximation of the function). The C math.h library im-

plements many mathematical functions using polynomial

approximations.

2.1.2 Function Memoization. Function memoization [4] is a

technique where the input values of functions are stored in

a lookup table as they are computed so subsequent calls to

the function with the same operand can be resolved with a

table lookup instead of an evaluation of the function which

may be expensive to compute. In the context of approximate

computing, function memoization refers to the same practice

of storing the results of calls as they are computed, but instead

of resolving with a table lookup only if the operands exactly

match the operands of a previous call, the function resolves

with a table lookup if the operands approximately match the

operands of a previous call.

2.1.3 Table Lookup. Table lookup is technique rooted in the

history where tables of function values (such as the trigono-

metric functions) would be printed in books so that they

might be referred to instead of having to directly compute

the value of the function. This differs from function memo-

ization in that here, the table is generated prior to execution

of the application, whereas function memoization generates

the table “on-the-fly”.

In [5], these tables are constructed via what is essentially a

brute-force enumeration of the function space and the results

are aggregated via a clustering algorithm. More recently, [6]

has introduced an FPGA-based approach to implementing

table lookup approximation which uses gradient information

to identify the intervals for which the function should be

approximated.

2.2 The ACCEPT framework
The ACCEPT framework introduced in [7] is a pragmatic

framework for generating several versions of a C++ program

https://github.com/neel-one/nocap

2 • Teoh, Ly, Goebel, Shah

with varying levels of quality and speed. The framework

extends LLVM 3.2 and EnerJ [8], an annotation system for

approximate computing, with several passes to implement a

type system for approximate variables to identify regions of

code amenable to approximation, estimates the effect of relax-

ations, and finally greedily generates a set of configurations

to attain target levels of error in the output application.

3 METHODOLOGY
At a high-level, we apply profiled input data to generate

lookup tables for continuous functions and then redirect calls

to the functions to instead use values from the lookup table.

We target continuous functions because continuous functions

have the property that for inputs sufficiently close to an input

𝑥 , the values will similarly be similarly close.

3.1 Profiling of inputs
We profile the code using LLVM to identify the input values

for functions to which we can apply table lookup. Assuming

the profile data is reflective of typical inputs, we identify

which intervals on the domain can be implemented instead

as a table lookup.

3.2 Construction of table input intervals
Once the intervals which should be resolved to table lookups

are identified, we construct the actual intervals which will

appear in the table. The exact number of intervals is specified

by the user, and the exact intervals are simply determined by

splitting the input range evenly by the number of intervals.

Then, for each interval, we evaluate the function at the me-

dian of the interval and use the value from that evaluation as

the table entry for the interval (as depicted in Figure 1).

3.3 Redirection of function calls
After the table is constructed, what remains is to integrate

the table into the application. To integrate the table into the

application, we modify each function so that if the operand

to the function is in the table generated, the function should

return the value in the table. Otherwise, the function should

execute as normal.

4 EVALUATION
Table lookup techniques trade both memory and precision

for speed, so we will measure memory usage, precision, and

speed for both the original and table lookup modified version

of the binary. Specifically, runtime is measured using the

linux time utility. We quantify memory usage by the number

of values to be stored in the table and compute a normalized

error statistic for each number of values to be stored in the

table.

5 RESULTS AND ANALYSIS
In this section, we present the results of our experiments and

analyze the results.

5.1 Benchmarks
We constructed a small custom C program in which the exe-

cution time is dominated by the computation of the function

exp. For this, we only measure the time it takes to run the

program after compilation.

We use the Black-Scholes algorithm (a pricing model used

to determine the fair price or theoretical value for a call or

a put option) implementation from the ACCEPT framework

test suite
2
as a benchmark because it uses functions such as

exp, log, and sqrt which can be expensive to compute ex-

actly. We removed the ACCEPT framework type system from

the Black-Scholes algorithm implementation as our frame-

work is not implemented on top of the ACCEPT framework.

5.2 Results
For our custom C programs, we find that there is speedup

when running NOCAP to approximate exp and log – this is

likely because the implementation of the two functions in-

volve evaluations of Taylor polynomial like functions which

can be expensive to evaluate. On the other hand, running NO-

CAP to approximate sqrt seemed to slow down the program

possibly because sqrt is evaluated by a hardware instruction.
These are summarized in 2

We did not measure how precise the approximated custom

C programs were because there was no output on which to

evaluate the custom programs.

5.2.1 Custom C program - exp. The C program we imple-

ment is a deterministic program which runs the function

exp repeatedly. We observe an average speedup of about 60%

when we replace the original calls of exp with table lookups.

Specifically, we improve the average running time of the

program from 2.4911 seconds to 0.9946 seconds.

5.2.2 Custom C program - log. We implement a similar pro-

gram which runs log repeatedly (but fewer times than the

exp program) and observe a speedup of about 42% (from

0.0726 seconds to 0.0421 seconds) when approximating log.

5.2.3 Custom C program - sqrt. We implement a similar

program which runs sqrt repeatedly (again, but fewer times

than the exp program) and observe a slow down of about 60%

(from 0.0262 seconds to 0.042 seconds) when approximating

sqrt.

5.2.4 Black-Scholes. The Black-Scholes algorithm is a deter-

ministic programwhich computes the Black-Scholes function.

2
https://github.com/uwsampa/accept-apps

https://github.com/uwsampa/accept-apps

NOCAP: Nearby-operand Continuous Approximation • 3

Fig. 1. High-level overview of NOCAP’s workflow on sqrt. Afterwards, the new source code with the lookup table implementation of sqrt
is emitted.

Fig. 2. We find that log and exp are greatly sped-up while sqrt is
slowed down.

We profiled the program on an input computing the Black-

Scholes price model for 16 options and then ran both the

original Black-Scholes program and our approximated ver-

sion on an input of 10 million options to obtain the following

observations.

Following [7], we compute the average normalized dif-

ference between the two options as follows to evaluate the

accuracy of the approximated program. Specifically, we com-

pute∑︁
option

|Original option price − Approximated option price|
Max original option price

as our accuracy metric. The maximum and minimum option

prices computed by the original Black-Scholes program are

$28.6436 and $−1.4007 × e
−6
.

When we replace uses of log by table lookups, we find that
the average normalized difference converges to about 0.036

after using only 10 buckets. For sqrt, the average normalized

difference tends to 0.039 after using about 50 buckets. Mea-

surements for log and sqrt are summarized in Figure 4. For

exp, the normalized difference tends to 0.01680 after using

about 100 buckets, though it is of note that this normalized

difference is attained before using 100 buckets. Measurements

for exp are summarized in Figure ??. Note that average nor-
malized error for log approximation drops suddenly when

the number of buckets is increased from 1 bucket to 2 bucket,

and then increases again after the number of buckets is in-

creased to 3. This seems to happen because log is computed

on values which are near the first and third quartile of the

domain which is where the value of the buckets are found

when there are two buckets in the table.

4 • Teoh, Ly, Goebel, Shah

Fig. 3. The average normalized differences tend to their asymptotic
values quite quickly for log and sqrt.

Fig. 4. The average normalized differences tend to its asymptotic
values quite slowly when approximating exp.

The exact cause of difference in convergence rates is un-

clear, but it seems that the rate of convergence is related to

the gradient of the function being approximated – log has
a quite small gradient, while exp has a quite large gradient,
and sqrt has a gradient between the two.

The percent speedupwe see after replacing each of the func-

tions with a table lookup is summarized in 1. Exact running

times are given in 5. The speedup differs from the amount

observed in the custom C programs (which had computa-

tions which were mainly composed of the functions being

approximated) because the Black-Scholes program doesmany

computations other than computations of log, sqrt, and exp.
It is unclear why the Black-Scholes benchmark exhibited

speedup when approximating sqrt while the custom C pro-

gram for sqrt exhibited slowdown. One possible reason is

that the values that sqrt was evaluated on were not able

to be computed easily for some reason, so the compiler was

forced to rely on a software implementation of sqrt which
runs slower than a table lookup.

Fig. 5. All versions of the Black-Scholes benchmark exhibited
speedup.

5.3 Challenges
One major challenge we faced was building the ACCEPT

framework. While the framework is open-source, it was built

on top of an older version of LLVM–specifically LLVM 3.2–

while the current major release of LLVM is version 15. The

difference in version caused several compilation and linking

issues which could not be resolved in a reasonable amount

of time. As such, we were unable to integrate NOCAP into

the ACCEPT framework.

6 CONCLUSIONS
We implement a compiler-guided optimization framework for

generating lookup tables for functions based on profile data.

Our results indicate that there are considerable improvements

in code speed to be had when applying our framework, even

if the use cases may be somewhat specific.

We categorize future work into two categories: usability

and technical implementation.

6.1 Contributions
We provide an open-source MIT-licensed compiler-guided

optimization framework for optimizing C/C++ functions via

lookup table approximation based on program profile data.

We also demonstrate speedup of continuous mathematical

functions defined in math.h and evaluate thememory-efficiency

of this lookup table scheme with respect to accuracy.

6.2 Future usability improvements
Currently, the input program needs to be profiled (involving

a run of the program) for each function-to-approximate. It

would be good to only profile the input program once, and

be able to generate executables for different combinations

NOCAP: Nearby-operand Continuous Approximation • 5

log approx sqrt approx exp approx

Speedup 0.5% 3.9% 6.5%

Normalized Average Difference 0.036 0.039 0.0168

Table 1. Summary statistics for the Black-Scholes benchmark. We approximate the functions log, sqrt, exp individually. The normalized
average difference statistics are the difference the program (when profiled on 16 inputs) tends to as the number of buckets increases.

of functions-to-approximate. This would vastly decrease the

time needed to build and run NOCAP.

Additionally, it would be good to better customize and

measure NOCAP’s memory usage via allowing the user to

provide a memory limit in byte units.

Finally, it would be good to allow the user to provide

custom header file(s) with user-defined functions with the

double → double signature, which will augment NOCAP

with the ability to approximate user-defined functions.

6.3 Future technical improvements
There are other ways in which the table lookup can be im-

plemented. One is to map each interval to a linear or higher

order approximation of the function rather than a constant

(so that the function is essentially approximated by a spline).

Additionally, it would be good to determine if setting the

bucket width in the table dynamically based on profile data

would be useful in increasing the accuracy of the approxi-

mated applications. We hypothesize that setting the interval

width so that more buckets are constructed when inputs are

close together will improve accuracy when approximating

functions which have sudden changes in output.

It would also be good to augment NOCAP with dynamic

function memoization, which could be applicable in many

cases, including long-running online programs like servers.

Finally, it would be good to determine if the gradient-based

bucket computation employed by [6] could be applied in soft-

ware instead of in hardware and what speed-up and mem-

ory/accuracy trade-off can be observed in this case.

REFERENCES
[1] Thierry Moreau, Joshua San Miguel, Mark Wyse, James Bornholt,

Armin Alaghi, Luis Ceze, Natalie Enright Jerger, and Adrian Sampson.

2018. A taxonomy of general purpose approximate computing tech-

niques. IEEE Embedded Systems Letters, 10, 1, 2–5. doi: 10.1109/LES.20
17.2758679.

[2] SparshMittal. 2016. A survey of techniques for approximate computing.

ACM Comput. Surv., 48, 4, Article 62, (Mar. 2016), 33 pages. doi: 10.114

5/2893356.

[3] Jean-Michel Muller. 2020. Elementary functions and approximate com-

puting. Proceedings of the IEEE, 108, 12, 2136–2149. doi: 10.1109/JPRO
C.2020.2991885.

[4] Priya Arundhati, Sisir Kumar Jena, and Santosh Kumar Pani. 2022.

Approximate function memoization. Concurrency and Computation:
Practice and Experience, 34, 23, e7204. eprint: https://onlinelibrary.wile
y.com/doi/pdf/10.1002/cpe.7204. doi: https://doi.org/10.1002/cpe.7204.

[5] Ye Tian, Qian Zhang, Ting Wang, and Qiang Xu. 2018. Lookup table

allocation for approximate computing with memory under quality

constraints. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), 153–158. doi: 10.23919/DATE.2018.8341995.

[6] Chetana Pradhan, Martin Letras, and Jürgen Teich. 2023. Efficient

table-based function approximation on fpgas using interval splitting

and bram instantiation. ACM Trans. Embed. Comput. Syst., (Jan. 2023).
Just Accepted. doi: 10.1145/3580737.

[7] Adrian Sampson, André Baixo, Benjamin Ransford, Thierry Moreau,

Joshua Yip, Luis Ceze, and Mark Oskin. 2015. Accept: a programmer-

guided compiler framework for practical approximate computing. Uni-

versity of Washington, (2015). https://dada.cs.washington.edu/researc

h/tr/2015/01/UW-CSE-15-01-01.pdf.

[8] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-

gasam, Luis Ceze, and Dan Grossman. 2011. Enerj: approximate data

types for safe and general low-power computation. In Proceedings of
the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. Mary

W. Hall and David A. Padua, (Eds.) ACM, 164–174. doi: 10.1145/19934

98.1993518.

https://doi.org/10.1109/LES.2017.2758679
https://doi.org/10.1109/LES.2017.2758679
https://doi.org/10.1145/2893356
https://doi.org/10.1145/2893356
https://doi.org/10.1109/JPROC.2020.2991885
https://doi.org/10.1109/JPROC.2020.2991885
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.7204
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.7204
https://doi.org/https://doi.org/10.1002/cpe.7204
https://doi.org/10.23919/DATE.2018.8341995
https://doi.org/10.1145/3580737
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://doi.org/10.1145/1993498.1993518
https://doi.org/10.1145/1993498.1993518

	Abstract
	1 Introduction
	2 Related Work
	2.1 Techniques of Approximate Computation
	2.2 The ACCEPT framework

	3 Methodology
	3.1 Profiling of inputs
	3.2 Construction of table input intervals
	3.3 Redirection of function calls

	4 Evaluation
	5 Results and Analysis
	5.1 Benchmarks
	5.2 Results
	5.3 Challenges

	6 Conclusions
	6.1 Contributions
	6.2 Future usability improvements
	6.3 Future technical improvements

